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Abstract

A new formulation of the collapsed dimension method (CDM), called the modified collapsed dimension method
(MCDM) whose approach is similar to the discrete ordinate method (DOM), has been proposed. In the MCDM,
the time consuming procedures of ray tracing and source term evaluation are not required, as a result of which the
method becomes computationally efficient. To validate the formulation, test problems dealing with radiative heat trans-
fer with absorbing, emitting and scattering medium have been considered. To compare the performance of the MCDM,
the same problems have also been solved using the CDM and the DOM. Results have been compared against the
benchmark results. For the same level of accuracy, MCDM has been found faster than the CDM and the DOM. How-
ever, the number of iterations required for the converged solution in the MCDM and the DOM has been found to be
almost the same.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A large class of problems requires analysis of thermal
radiation with participating medium. Since radiation in
a participating medium is a volumetric phenomenon,
and radiation from the 3-D space needs to be considered
even if the solution domain is 1-D or 2-D one, treatment
of thermal radiation is more difficult than that of con-
duction and/or convection. In conjugate mode prob-
lems, determination of radiative information for the
energy equation is the most time consuming component
[1,2]. Therefore, efforts have been made to develop
numerical methods to deal with various types of radia-
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tive transport problems [3–8] and also to make the exist-
ing methods computationally more efficient [9–13].

Collapsed dimension method (CDM) [2,14–22] is one
of the efficient methods which is gaining momentum for
radiative transport problems in 1-D and 2-D geometries.
It has been successfully applied to a wide range of
problems dealing with radiation, conduction and/or
convection mode problems [2,14–22]. In the CDM,
3-D radiative information is collapsed to a 2-D solution
plane in terms of effective intensity and the collapsing
coefficient. Absence of the solid angle in the CDM
makes formulation simpler and the method computa-
tionally efficient. Since in the CDM, all information lies
in the 2-D solution plane, mathematical expressions of
heat flux, incident radiation, etc., are different than those
being used in methods like the discrete ordinate method
(DOM) [3–5,11,12], the discrete transfer method (DTM)
[6,9,10], the finite volume method (FVM) [7,8,13], etc.
ed.
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Nomenclature

A cell-face area
a anisotropy factor
c weight factor, Eq. (24)
f weight factor, Eq. (20)
I effective intensity
Ib blackbody effective intensity,

rT 4
b

2
i intensity
ib blackbody intensity,

rT 4
b

p
M number of effective intensities
q heat flux
r position, r(x,z)
S source term in the RTE dealing with inten-

sity ieS source term in the RTE dealing with effec-
tive intensity I

s direction of intensity i

~s direction of the effective intensity I

T temperature
V volume of the cell
X length of the enclosure in x-direction
Z length of the enclosure in z-direction
x,z coordinate axis directions

Greek symbols

a planar angle
b extinction coefficient
c linear interpolation factor
e emissivity
g collapsing coefficient
n direction cosine with respect to z-axis
h polar angle
ja absorption coefficient
l direction cosine with respect to x-axis

r Stefan–Boltzmann constant (= 5.670 ·
10�8 W/m2 K4)

rs scattering coefficient
s optical thickness/optical distance
~s optical thickness defined in the 2-D solution

plane
U scattering phase function while dealing with

intensity i

H scattering phase function while dealing with
the effective intensity I

/ azimuthal angle
w non-dimensional heat flux
x scattering albedo
X solid angle, sinhdhd/
DX elemental solid angle

Subscripts

b blackbody
B boundary
e,w,n, s east, west, north and south
in entering the control volume
j upstream point dealing with intensity i

j + 1 downstream point dealing with intensity i
~j upstream point dealing with effective inten-

sity I
~jþ 1 downstream point dealing with effective

intensity I

out leaving the control volume
P value at cell center
x,z x- and z-reference faces

Superscript

m index for direction
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In earlier works on the CDM [14–21], the ray tracing
approach similar to the DTM [6,9,10] was used. The ray
tracing approach although converges fast, has an inher-
ent drawback that it requires prior knowledge of the
points of origin of the radiative intensities on the enclo-
sure boundaries, and in this the source term evaluation
procedure is more complicated. Because of this, the
method not only becomes difficult to implement in com-
plicated geometries, but it also becomes computationally
inefficient [9,19].

Combined mode problems often require non-uniform
or unstructured grids. Such problems, therefore, necessi-
tate a radiative transfer method to be compatible to non-
uniform or unstructured grids used for solving the
momentum and energy equations. In complex or even
in simple geometries, with non-uniform or unstructured
grids, the ray tracing and the source term evaluation be-
come more difficult. The DTM and the existing ap-
proach of the CDM suffer from this drawback.

Since the DOM [3–5] begins with the differential form
of the radiative transfer equation (RTE) and in a given
control volume it makes use of the FVM approach to
balance the radiative energy in a given direction, unlike
the DTM, it is more flexible to the type of the grids [23].
As the DOM does not require ray tracing like the DTM
and the source term evaluation in this method is simpler,
it is easier to implement and is thus computationally fas-
ter than the DTM [24].

To make the CDM computationally more efficient
and also to extend its applications to various types of
geometries and grids, in the present work the DOM like
approach is proposed. Since in the CDM, the effective
intensities lie in the 2-D solution plane and the concept
of solid angle does not arise, unlike the DOM, in this
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method the selection of discrete directions is simple and
evaluation of their corresponding weights is much easier
than the DOM.

To validate and also to compare the performance of
the proposed formulation of the CDM, hereafter called
the modified collapsed dimension method (MCDM),
with the earlier approach of the CDM [13–21] and the
DOM [3–5], three test problems have been taken up.
For various parameters like the extinction coefficient,
scattering albedo, etc., heat flux and temperature results
have been compared with the benchmark results. CPU
times of the MCDM, CDM and the DOM have been
also compared.

In previous works [17,19], performance of the CDM
has been compared with that of the DTM. Although in
earlier applications [2,14–22], the CDM has been found
to provide accurate results, as far as comparison of the
computational efficiencies of the CDM and the DOM
is concerned, so far no study has been reported. Since
the proposed formulation of the CDM (MCDM) uses
a DOM like formulation, the present work is, therefore,
also aimed at comparing the computational efficiencies
of the two methods.
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Fig. 1. (a) 3-D radiative information i(h,u) at a point P of an area el
information to the 2-D solution plane in the CDM.
2. Formulation

At any point P of an area element dA as shown in
Fig. 1(a), the RTE for direction s(X) is given by [25]

di Xð Þ
dsðXÞ ¼ jaib � bi Xð Þ þ rs

4p

Z 4p

X¼0

i Xð ÞU X0;Xð ÞdX ð1Þ

where ja is the absorption coefficient, b is the extinction
coefficient, rs is the scattering coefficient, U is the scat-
tering phase function and ib ¼

rT 4
b

p is the Planck black-
body intensity. Eq. (1) can be written as

di Xð Þ
dsðXÞ þ bi Xð Þ ¼ bS Xð Þ ð2Þ

In optical coordinate, Eq. (2) is written as

di Xð Þ
dsðXÞ þ i Xð Þ ¼ S Xð Þ ð3Þ

where s is the optical-distance bs and the source term S

is given by

S ¼ 1� xð Þib þ
x
4p

Z 4p

X¼0

i Xð ÞUðX0;XÞdX ð4Þ
Solution plane:
x–z plane

y

z

dA
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ement dA in actual situation and (b) collapsing of 3-D radiative



Fig. 2. Direction cosines lm and nm for the discrete direction ~sm

having planar angle am in a 2-D rectangular control volume.
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where x is the scattering albedo. If the boundary inten-
sity iB is assumed to be known, Eq. (3) can be written
as

iðsÞ ¼ iB expð�sÞ þ
Z s

s0¼0

Sðs0Þ exp � s� s0ð Þf gds0 ð5Þ

If the source term is assumed to be constant over the
optical path-length s then Eq. (5) can be written in the
recursive form as

ijþ1 ¼ ij expð�sÞ þ Sav 1� expð�sÞ½ � ð6Þ

where for a given direction, j and j + 1 are the upstream
and downstream points, respectively, and Sav is the
constant value of the source term over the optical
path-length s.

In the CDM, a hemisphere of radiative intensities
i(X) at a point P of an area element dA as shown in
Fig. 1(a) is collapsed to a semicircle of effective intensi-
ties I(a) all lying in the 2-D solution plane (Fig. 1(b)).
Thus the RTE in the CDM is written as [14]

dI að Þ
d~sðaÞ ¼ jgIb � bgI að Þ þ rsg

2p

Z 2p

a¼0

I að ÞH a0; að Þda ð7Þ

where g is the collapsing coefficient which collapses the
3-D angular radiative information contained in intensi-
ties i(X) to the effective intensities I(a). At any point in
the 2-D solution plane, a hemisphere/sphere of intensi-
ties i(X) and a semi-circle/circle of effective intensities
I(a) yield the same heat flux and temperature. It is to
be noted that in Eq. (1), direction s(X) is in the 3-D
angular space (Fig. 1(a)), while in Eq. (7), ~sðaÞ is only
in the 2-D solution plane (Fig. 1(b)). The planar angle
a of the effective intensity I is always measured from
the control surface (Fig. 1(b)). Since in the CDM, effec-

tive intensities I(a) exist in the 2-D plane only, Ib ¼
rT 4

b

2
.

Other differences in the forms of various terms in Eq. (7)
are also because of the collapsing procedure.

Like Eq. (2), we can write Eq. (7) as

dI að Þ
d~s að Þ þ bgI að Þ ¼ bgeS að Þ ð8Þ

In optical coordinate, Eq. (8) is written as

dI að Þ
d~s að Þ þ gI að Þ ¼ geS að Þ ð9Þ

where the source term eS is given by

eS ¼ ð1� xÞIb þ
x
2p

Z 2p

a¼0

I að ÞHða0; aÞda ð10Þ

With boundary effective intensity IB known, Eq. (10) can
be written as

Ið~sÞ ¼ IB expð�~sgÞ þ
Z ~s

~s0¼0

eSð~s0Þ exp � ~s� ~s0ð Þgf gd~s0

ð11Þ
If in Eq. (11), the source terms eS is assumed to be con-
stant over the optical path-length ~s in the solution plane,
like Eq. (6), we can also have a recursive relation of
effective intensity I as

I~jþ1 ¼ I~j expð�~sgÞ þ eS av 1� expð�~sgÞ½ � ð12Þ

It should be noted here that in Eq. (6), s = s(X) = s (h,/)
and it lies in the 3-D space, whereas in Eqs. (9), (11)
and (12), ~s ¼ ~sðaÞ and it lies only in the 2-D solution
plane. Accordingly, in Eqs. (6) and (12) meanings of j
and ~j are also different, ~j is the projection of j on the 2-
D solution plane.

To solve the radiative transport problems, the DTM
and the DOM, use two different approaches. While the
DTM uses the integral form of the RTE (Eq. (6)), the
starting point of the DOM is the differential form of
the RTE (Eq. (2)). In the DTM, to calculate the intensity
distribution at any location, knowledge about the origin
points of the intensities at the boundaries of the enclosure
is required, and then for each discrete direction, a recur-
sive relation (Eq. (6)) is used to march from the boundary
point to the destination point. For a given intensity,
source term (Eq. (4)) has to be evaluated in every recur-
sive step. More details on the DTM are available in
[6,9,10,19]. Ray tracing and the source term evaluation
in the DTM are complicated and this makes this method
computationally less efficient [9,19]. Unlike the DTM,
however, in the DOM, apriori knowledge of the origin
points of the intensities is not required and the procedure
of the source term evaluation is also simple, as a result of
which the DOM has a wider applicability.

Like Eq. (6) of the DTM, earlier works on the CDM
[2,14–21] were based on the ray tracing approach and
thus Eq. (12) was used recursively. Although, the ray
tracing approach of the CDM was found faster than
the DTM [19], in this method the source term evaluation
procedure was still time consuming. Therefore, to make



34 S.C. Mishra et al. / International Journal of Heat and Mass Transfer 49 (2006) 30–41
the CDM computationally more efficient, in the follow-
ing pages, a new formulation is presented.

In the CDM, the differential form of the RTE (Eq.
(8)) for the discrete direction m in the solution plane is
written as

lm oI
m

ox
þ nm

oIm

oz
þ bgIm ¼ bgeSm ð13Þ

where lm ¼ cos am and nm ¼ sin am are the direction co-
sines (Fig. 2) of the effective intensity Im having planar
angle am in the solution plane. Integrating Eq. (13) over
the volume element V = DxDz (with unit depth in
y-direction) and applying Gauss divergence theorem
and Green�s theorem, we get

lm Ime Ae � ImwAw

� �
þ nm ImnAn � Ims As

� �
¼ �bgImP þ bgeSm

P ð14Þ

where Ime ; Imw; Ims and Imn are the average effective intensi-
ties in the discrete direction m through the east, west,
south and north faces of the control volume, respectively
(Fig. 3). In Eq. (14), ImP and eSm

P are the volume-averaged
effective intensity and the source term for direction m at
the geometric center P of the control volume.

To reduce the number of unknowns from Eq. (14),
for a given direction m, a relation between the cell-face
and volume-averaged intensities is used. For a given
coordinate direction, if a linear relationship among the
two cell-face intensities and ImP is assumed, then

ImP ¼ cxI
m
e þ ð1� cxÞImw ¼ czI

m
n þ ð1� czÞImn ð15Þ
Fig. 3. In a 2-D rectangular enclosure, marching scheme in the MCD
quadrant.
where cx and cz are constants 1
2
6 cx; cz 6 1. From Eqs.

(14) and (15), unknown effective intensities Ime and Imn
can be eliminated and the following relation is obtained.

ImP ¼
bgV eSm

P þ lmAew
Imw
cx
þ nmAns

Ims
cz

bgV þ lm Aew

cx
þ nm Ans

cz

ð16Þ

where

Aew ¼ ð1� cxÞAe þ cxAw

Ans ¼ ð1� czÞAn þ czAs

ð17Þ

are average face areas. Eqs. (16) and (17) are valid when
both the direction cosines lm and nm are positive. In this
situation, when marching from the bottom-left corner
(Fig. 3), as given in Eq. (16), ImP is calculated from
known values of Imw and Ims and then using Eq. (15), un-
known cell-face intensities Ime and Imn are calculated.
However, when one or both of the direction cosines
are negative, marching will have to be started from the
other three corners (Fig. 3) and for these cases, eliminat-
ing the unknown effective intensities, we get a general
form of the Eq. (16).

ImP ¼
bgV eSm

P þ lmj jAx
Im
x;in

cx
þ nmj jAz

Im
z;in

cz

bgV þ lmj j Ax;out

cx
þ nmj j Az;out

cz

ð18Þ

where Imx;in and Imz;in are the effective intensities entering
a control volume through x- and z-faces, respectively.
Ax,out and Az,out are x- and z-cell-face areas, respectively
through which effective intensities leave.

Ax ¼ ð1� cxÞAx;out þ cxAx;in

Az ¼ ð1� czÞAz;out þ czAz;in
ð19Þ
M for four sample equally spaced directions with one in every



Fig. 4. An irregular shape 2-D geometry with control volumes
along with outward normals to the cell surfaces of a control
volume.
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The expression of ImP given in Eq. (18) is valid for any
2-D rectangular control volume. In case of 2-D irregular
geometries, the control volumes can be of irregular
shapes (Fig. 4) and normal vectors to the cell-faces
may not be aligned with the coordinate directions. Also,
unlike rectangular control volumes, in case of irregular
shape control volumes, the concepts of quadrants and
the direction cosines get modified. In this case, they
may be acute or obtuse as per the geometry of the con-
trol volume. Therefore, rather than taking the direction
cosines as cos a and sin a, in this case, we find out the
direction cosines by taking the scalar product of the
ray direction ŝm and the outward normal vector n̂k to
the kth surface. Thus for a general control volume
(Fig. 4), ImP is calculated from the following:

ImP ¼
bgV eSm

P þ
P

k;inI
m
k ŝm � n̂kj jAk=ck

bgV þ
P

k;out ŝ
m � n̂kj jAk=ck

ð20Þ

In Eq. (20), ck stands for cx or cz depending upon
whether the cell surface is the east (or west) or the north
(or south) surface. Similarly Imk stands for intensity
through the kth surface of the control volume. The
‘‘in’’ and ‘‘out’’ on the summation signs denote summa-
tion over the cell faces with incoming ðŝm � n̂k > 0Þ or
outgoing ð̂sm � n̂k < 0Þ intensities, respectively.

Evaluation of ImP in Eq. (20) requires prior informa-
tion about the source term eSm

P . For this, Eq. (10) is writ-
ten as

eSm

P ¼ ð1� xÞIb;P þ
x
2p

XM
m0¼1

Im
0

P Hðam0
; amÞf m0 ð21Þ

where in Eq. (21) f m
0
is the weight and M is the total

number of effective intensities Im considered over the
0 6 am 6 2p. If scattering is approximated by a linear
anisotropic phase function H am
0
; am

� �
¼ 1þ a sin am

0

sin am [14], then Eq. (21) is written as

eSm

P ¼ ð1� xÞIb;P þ
x
2p

XM
m0¼1

Im
0

P Dam
0

þ xa sin am

2p

XM
m0¼1

2 sin am
0
sin

Dam
0

2

� �
Im

0

P ð22Þ

where in Eq. (22), a is the anisotropy factor,
�1 6 a 6 +1. For forward scattering, a > 0, for back-
ward scattering a < 0 and for isotropic scattering
a = 0. Eq. (22) can be written in a simplified form as

eSm

P ¼ ð1� xÞIb;P þ
x
2p

Gþ xa sin am

2p
q ð23Þ

where effective incident radiation G and heat flux q

expressions in the CDM are given by

G¼
Z 2p

a¼0

I að Þda�
XM
m¼1

ImPDa
m ð24Þ

q¼
Z 2p

a¼0

I að Þsinada�
XM
m¼1

2sinam sin
Dam

2

� �
ImP ¼

XM
m¼1

cmImP

ð25Þ

where the weight factor cm is given by

cm ¼ 2 sin am sin
Dam

2

� �
ð26Þ

In above equations, Dam is the angular span over which
the effective intensity Im having planar angle am is as-
sumed to be isotropic. Dam need not be equal. However,
in the present work, Dam has been assumed equal for all
values of m.

To calculate the unknown intensities, before march-
ing from any corner, knowledge about the known
cell-face intensities is required. If the boundary is dif-
fuse-gray having temperature TB and emissivity eB, in
the CDM, the boundary intensity IB is given by

IB ¼ eBrT 4
B

2
þ 1� eB

2

Z p

a¼0

I að Þ sin ada

� eBrT 4
B

2
þ
XM=2

m¼1

cmImP ð27Þ

In Eq. (27), the first and the second terms on the right-
hand-side represent emitted and reflected components of
the boundary effective intensity, respectively.

If a heat transfer problem involves thermal radiation,
then in the CDM, the divergence of radiative heat flux
r �~q is calculated from the following:

r �~q ¼ jag 2pIb � Gð Þ ¼ jag 2p
rT 4

b

2
� G

� �
ð28Þ

In case of radiative equilibrium, r �~q ¼ 0 and the un-
known temperature is calculated from
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T ¼ G
pr

� �1
4

ð29Þ

In the CDM, one can either follow the approach used in
earlier works [14–21] or the one proposed above. In both
the approaches, values of the collapsing coefficient g are
required. g is a function of the properties of the partici-
pating medium and its evaluation procedure has been
laid out in [14]. Expressions of g for absorbing–emitting
cases of radiative equilibrium and non-equilibrium situa-
tions are given in Appendix A. For easy access to others,
expressions of g for different situations can be down-
loaded from the website address given in Appendix A.

Expressions of g are general ones and have been
found to be valid for 1-D and 2-D geometries. With
problems involving radiation along with conduction
and/or convection, g expressions for non-radiative equi-
librium are used.
β
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Fig. 5. Variation of non-dimensional heat flux W along the hot
wall; comparison of the CDM, the MCDM and the DOM
results with the exact results [26] for (a) extinction coefficient
b = 0.25, 0.5 and 1.0, and (b) b = 2.0, 4.0 and 10.0.
3. Results and discussion

In the following pages, a new formulation of the
CDM, called the MCDM, presented above is validated
by solving three test problems dealing with an absorb-
ing, emitting and scattering homogeneous gray medium.
Both radiative equilibrium and non-radiative equilib-
rium cases are considered. To compare the performance
of the MCDM, the same problems are also solved using
the CDM (having ray tracing approach) and the DOM.
Heat flux and temperature results of the three methods
are compared against benchmark results. CPU times
of the three methods are also compared for some repre-
sentative cases.

In validation studies, 20 · 20 control volumes and 24
discrete directions were considered in the three methods.
In the DOM, the widely used S–N quadrature scheme
[3–5,23] was used. For the 2-D problems, these 24 dis-
crete directions were equivalent to S-6 approximation
of the DOM. In the CDM and the MCDM, equally
spaced 24 directions were considered. In both the meth-
ods, weight factors cm were calculated using Eq. (25) and
in the MCDM the direction cosines were computed
using lm ¼ cos am and nm ¼ sin am. Both in the MCDM
and the DOM, cx = cz = 0.5 was considered.

3.1. 2-D heat transfer in an enclosure with one hot wall

In this case, the south boundary of the 2-D rectangu-
lar enclosure (Fig. 3) is at a known temperature Ts.
Other three boundaries are cold. All four boundaries
are considered black. The enclosed gray and homoge-
nous medium is absorbing, emitting and isotropically
scattering. This is a representative of a radiative equilib-
rium problem. In this case, the medium temperature is
unknown.
In Fig. 5(a) and (b), for aspect ratio X/Z = 1, non-
dimensional heat flux W ¼ q

rT 4
s
results along the hot

(south) wall obtained from the CDM, the MCDM and
the DOM have been compared with the exact results
[26]. In Fig. 5(a), heat flux results have been compared
for extinction coefficient b = 0.25, 0.5 and 1.0, whereas
in Fig. 5(b), the same have been compared for b = 2.0,
4.0 and 10.0. It can be seen from the figures that the re-
sults of the three methods match very well with each
other and they are also in good agreement with the exact
results [26].

Since the MCDM and the DOM compute heat flux at
the same points (cell-surface centers), in Fig. 5, the
values of the two methods are seen at the same x/X
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locations. In the CDM, although heat flux can be calcu-
lated at cell-surface centers also, in the present case, it has
been evaluated at the cell corners, and thus like the exact
results [26], the CDM results can be seen also to cover the
corner and the middle points along the hot wall.

In Fig. 6, for b = 0.5, heat flux results along the hot
wall have been compared with the exact results [26] for
aspect ratio X/Z = 0.2, 2.0, 4.0 and 10.0. In studying
the performance of the three methods for different val-
ues of the aspect ratio, the value of X was kept unity.
For different values of X/Z, results of the CDM, the
DOM, and the MCDM compare very well with each
other and they also match very well with the exact re-
sults [26]. In Fig. 6, it can be seen that at x/X = 0.5
for the aspect ratio X/Z = 10.0, results of the four meth-
ods closely approximate its values (0.7040) for the 1-D
planar medium [27].

For X/Z = 1.0 and extinction coefficient b = 1.0, 4.0
and 10.0, non-dimensional centerline (x/X = 0.5) emis-

sive power U ¼ rT 4=p
rT 4

s =p

� �
has been compared with exact

results [26] in Fig. 7(a)–(c), respectively. For b = 1.0,
the DOM results are more scattered than the MCDM
results. CDM results closely match with the exact results
[26]. Since the MCDM uses DOM like formulation in
which for absorbing, emitting and isotropically scatter-
ing medium, in a given control volume, source term
(Eq. (22)) is the same for all the directions and in a given
direction, an intensity is also homogeneous over a cell-
surface, for less number of rays and control volumes,
for lower values of b some fluctuations in temperature
results are observed. The CDM and MCDM use equally
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spaced directions. Therefore, in these methods, fluctua-
tions are lower then the DOM in which the directions
are not equally spaced. Further, in the CDM, unlike
the MCDM and the DOM, even for absorbing–emitting
case, source term is different for different directions and
over a cell surface, in a given direction, intensity is not
considered homogeneous, results are relatively more
accurate.

3.2. 2-D black enclosure with absorbing–emitting

medium

In this case, the four boundaries of the 2-D rectangu-
lar enclosure (Fig. 3) are cold. All four boundaries are
considered black. The enclosed gray and homogenous
medium is absorbing, emitting and isotropically scatter-
ing and is at uniform temperature Tg. This is a represen-
tative of a non-radiative equilibrium problem.

In Fig. 8, for X/Z = 1.0 non-dimensional heat flux
W ¼ q=qT 4

g along the south wall computed using the
CDM, the MCDM and the DOM have been compared
with the DTM results. For 20 · 20 control volumes, the
DTM results with 12 · 24 (h · /) directions, in the pres-
ent case, have been considered as benchmark as the
DTM results were benchmarked against the Monte
Carlo method results.

For absorbing–emitting medium (x = 0.0), heat flux
results have been compared for extinction coefficient
b = 0.25, 0.5 and 1.0 in Fig. 8(a), while in Fig. 8(b), com-
parisons have been made for b = 2.0, 4.0 and 10.0.

It can be seen from Fig. 8(a) and (b) that results of
the three methods match very well with each other and
are also in close agreement with the DTM results. Minor
fluctuations in the DOM is attributed to the reason cited
before.

In Fig. 8(c), for b = 1.0, comparisons of south wall
heat flux have been made for absorbing, emitting and
isotropically scattering situation with scattering albedo
x = 0.0, 0.5 and 0.9. Like previous cases, here too the re-
sults of the three methods are found to compare very
well with the benchmark results.

3.3. A quadrilateral enclosure with constant gas

temperature

To demonstrate the applicability of the MCDM to
irregular geometries, we next consider radiative heat
transfer in an irregular quadrilateral enclosure (with
dimensions in meters) (Fig. 9(a)). The four walls of the
enclosure are cold and the absorbing, emitting medium
is maintained at a constant temperature Tg. The compu-
tational grids used in the calculation are also shown in
Fig. 9(a).

For 20 · 20 and 24 ray directions, in Fig. 9(b), non-
dimensional heat flux W ¼ q=rT 4

g along the south wall
computed using the CDM and the MCDM have been
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plotted against the benchmark DOM results (taken as
exact here) available in the literature [28]. For absorb-
ing–emitting medium (x = 0.0), heat flux results have
been compared for extinction coefficient b = 0.1, 1.0
and 10.0. It can be seen that the results of the MCDM
results are in very good agreements with that CDM
and the DOM results [28].

3.4. Comparison of CPU times and iterations

Especially while solving conjugate mode problems,
for steady state solutions, number of iterations and
CPU times are one of the vital points that form the basis
for selection of a radiative transfer method, because for
a large number of control volumes and directions, all
methods will provide accurate results. Keeping above
point in mind and having MCDM found able to provide
accurate results, to further justify its usage, next it is
important to know how its CPU times and number of
iterations compare with the CDM and the DOM.

In Table 1, CPU times (in second) and number of
iterations required to get converged solutions in three
methods have been compared for results presented in
Fig. 4(a) and (b). In all three methods, 20 · 20 control
volumes and 24 directions have been used, and solutions
were found converged when between two consecutive
iteration levels, the change in source term at all points
was within 1.0 · 10�6.
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It can be seen from Table 1 that the CDM that is
based on ray tracing approach [2,14–21] and evaluates
source term for every intensity using bilinear interpola-
tion, takes less number of iterations for the converged
solutions. However, per iteration it spends more time
than the MCDM and the DOM. Further, because of
the more number of calculations involved in the evalua-
tion of ray tracing and source term evaluation, total
CPU time in this method is much more than the MCDM
and the DOM. Since assigning the source term to every
effective intensity is more accurate in the CDM, this
method converges fast.
The number of iterations of the MCDM and the
DOM are found to be comparable. However, the
MCDM is found faster than the DOM. In the MCDM
and the DOM, the number of operations in all steps is
exactly the same, except in evaluation of the incident
radiation and heat flux. In calculation of heat flux, in
the DOM, in addition to the weight factor, every inten-
sity term is multiplied by corresponding direction
cosines. Whereas in the MCDM, no such direction
cosine term appears in the evaluation of heat flux (see
Eq. (24)). Also, in the DOM, in calculation of incident
radiation, every intensity is multiplied by a direction



Fig. 9. (a) The geometry and coordinates of the quadrangular
enclosure under consideration along with the non-uniform grids
used and (b) variation of non-dimensional heat fluxW along the
south wall; comparison of the CDM and the MCDM results
with the exact results [28] for extinction coefficient b = 0.0, 1.0
and 10.0.

Table 1
Comparison of CPU times (second) and number of iterations of
the CDM, the MCDM and the DOM for radiative equilibrium
problem with 20 · 20 control volumes and 24 directions

b CDM MCDM DOM

CPU
time

Iterations CPU
time

Iterations CPU
time

Iterations

0.25 10.413 8 0.256 12 0.522 12
0.5 14.734 11 0.328 16 0.625 16
1 21.384 16 0.483 25 0.890 25
2 36.949 28 0.826 44 1.542 44
4 76.617 59 1.707 93 2.958 93
10 259.061 196 6.269 348 10.259 337
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specific weight factor. However, in the MCDM, this
weight factor is simply Da which is constant for all
directions.

Since in the present test cases, anisotropy effect was
not considered and the boundaries of the enclosure were
also assumed black, heat flux term in all three methods
was calculated at the end of the iteration. However, if
either the medium has anisotropic scattering (Eq. (22))
and/or boundaries are reflecting (Eq. (26)), then heat
flux term has to be within the iteration loop and in that
case, the computational efficiency of the MCDM will
further improve.
4. Conclusions

A new formulation of the CDM, called the MCDM,
was proposed. After collapsing the radiative information
to the 2-D solution plane, formulation procedure of the
MCDMwas found similar to theDOM.MCDMwas val-
idated by solving three test problems in 2-D rectangular
and irregular quadrilateral enclosures containing absorb-
ing, emitting and isotropically scattering media. To check
how theMCDMcompares against the earlier formulation
of the CDM and the DOM, the same problems were also
solved using three methods. In all cases, the MCDM was
found to provide accurate results. Since in the MCDM,
number of calculations is less than the CDM and the
DOM, it was also found faster than both the methods.
Appendix A

Expression of the collapsing coefficient g for the case
of absorbing–emitting medium at radiative equilibrium
[14], r.~q ¼ 0.

g ¼

1:27276� 1:22505bþ 23:6226b2 � 136:935b3

�22:2416b4 for 10�4
6 b 6 0:1

1:25684� 0:108915bþ 0:075431b2 � 0:028079b3

þ0:005164b4 � 0:000363b5 for 0:1 < b 6 5

1:18129; for b P 5

8>>>>><
>>>>>:

ðA:1Þ
Expression of the collapsing coefficient g for the case of
absorbing–emitting medium (x = 0) at non-radiative
equilibrium [14], r.~q 6¼ 0.

g ¼

1:27338� 1:34631bþ 26:78364b2 � 159:953b3

for 10�4
6 b 6 0:1

1:26002� 0:145619bþ 0:125726b2 � 0:067566b3

þ0:006472b4 � 0:006152b5 for 0:1 < b 6 1

1:2376� 0:068275bþ 0:018395b2 � 0:002886b3

þ0:000185b4 for 1 < b 6 5

1:110975 for b P 5

8>>>>>>>>>><
>>>>>>>>>>:

ðA:2Þ
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Along with the above two expressions, for scattering sit-
uations, for both radiative and non-radiative equilib-
rium cases, expressions of g can be obtained from:
http://www.iitg.ac.in/scm. From the same location, the
CDM, MCDM and the DOM codes used for generating
results for the present work can also be downloaded.
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